Download the printable version of MAT 117 Formulas

Unit A: Exponents, Simplifying, Factoring, Solving

Order of Operations with Integers and Exponents:

  1. Evaluate expressions within parentheses
  2. Evaluate terms with exponents
  3. Multiply and divide (from left to right)
  4.  Add and subtract (from left to right)

Basic Properties of Exponents:   

Exponent of Zero:       LaTeX: a^0=1

Negative Exponents: 

Whole Number Base    

Positive Fraction Base    

  LaTeX: \displaystyle  \left( \frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}

Multiplying Binomials: FOIL

 First, Outer, Inner, Last

Multiplying Conjugate Binomials:

LaTeX: \displaystyle (A-B)(A+B) = A^2 - B^2

Factoring a Perfect Square Trinomial:

Finding nth Roots of Perfect nth Powers:   LaTeX: x^n = A \hspace{.5em} \Leftrightarrow \hspace{.5em} x = \sqrt[n]{A}

Converting between Radical and Exponent form:    

Product Property of Square Roots: (Use to simplify the square root of a whole number greater than 100)

    LaTeX: \sqrt{ab} = \sqrt{a} \cdot \sqrt{b}   

Square Root Multiplication: 

LaTeX:  \sqrt{a} \cdot \sqrt{b} = \sqrt{ab},   for any nonnegative numbers a and b

Scientific Notation:    A number written in scientific notation is a number between 1 and 10 multiplied by a power of 10.


Unit B: Solving, Introduction to Functions, Linear Functions, Systems of Equations

Solving an Absolute Value Equation:      LaTeX: |A| = B

Meaning of Inequalities: (Use to write inequality for a real-world situation)

Solving a Square Root:       LaTeX: ( \sqrt{w})^2 = w

Classifying Slopes Given Graphs of Lines:

Slope of a Line:   LaTeX: \displaystyle  \text{slope}=\frac{\text{rise}}{\text{run}}

Given two points (x1 , y1) and  (x2 , y2) on a non-vertical line,

the slope of the line is given by LaTeX: \displaystyle  m=\frac{y_2 - y_1}{x_2-x_1}

Slope-Intercept Form of a Line: 

LaTeX: \displaystyle  y=mx+b, where m is the slope and b is the y-intercept

Function:  A graph represents a function if and only if no two points on the graph have the same x-coordinate.

Vertical Line Test:

Domain of a Function:   The domain of a function is the set of all inputs that make the function a real number, i.e., all inputs for which it is possible to evaluate the function.

Range of a Function:   The range of a function is the set of all outputs of the function.

Average Rate of Change of a Function from xto x2:      LaTeX: \displaystyle  \frac{f(x_2) -f(x_1)}{x_2-x_1}, \hspace{1em} x_1 \ne x_2

Distance, Rate, Time:       LaTeX: \displaystyle \mathrm{distance} = \mathrm{rate} \cdot \mathrm{time}


Unit C: Graphs of Functions; Composite and Inverse Functions; Quadratic, Polynomial and Rational Functions

The Square Root Property:   LaTeX: \displaystyle  A^2 = n \hspace{.5em} \Leftrightarrow \hspace{.5em} A = \sqrt{n} \hspace{.5em} \textbf{or} \hspace{.5em} A = -\sqrt{n}

Quadratic Formula:

  LaTeX: \displaystyle  x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}  are the solution(s) to  LaTeX: \displaystyle  ax^2+bx+c = 0 

Complex Roots (Definition of i):    LaTeX: \displaystyle \sqrt{-1} = i

Graphing a Parabola of the Form LaTeX: \displaystyle  y = ax^2 :

Graphing a Parabola of the Form LaTeX: \displaystyle  y = ax^2 +cVertex is at LaTeX: \displaystyle  (0,c)

Parabola Vertex Form:   LaTeX: \displaystyle  y = a(x-h)^2+kwhere (h,k) is the vertex

Parabola Standard Form:      LaTeX: \displaystyle  y = ax^2+bx+c,  where LaTeX: \displaystyle  x=-\frac{b}{2a} is the axis of symmetry.

Writing a Quadratic Function Given its Zeros:

Difference Quotient of a Function:     LaTeX: \displaystyle \frac{f(x+h) - f(x)}{h}, \hspace{1em} \text{where} \hspace{.3em}  h \ne 0 

Finding where a Function is Increasing, Decreasing, or Constant Given the Graph:

Graphing an Absolute Value Equation (Shifting up/down versus left/right):

Symmetry of Graphs: 

Even and Odd Functions: 

Translating the Graph of a Parabola (One Step):

Horizontal Translations: LaTeX: (c > 0)

Vertical Translations: LaTeX: (c > 0)

Translating the Graph of a Parabola (Two Steps): LaTeX: (a > 0, b>0)

Translating the Graph of an Absolute Value Function (One Step):

Horizontal Translations: LaTeX: (c > 0)

Vertical Translations: LaTeX: (c > 0)

Translating the Graph of an Absolute Value Function (Two Steps): LaTeX: (a > 0, b>0)

Translating the Graph of a Function (One Step):

Horizontal translations: LaTeX: (c > 0)

Vertical translations: LaTeX: (c > 0)

Translating the Graph of a Function (Two Steps): LaTeX: (a > 0, b>0)

Combining functions, f and g(A is domain of f, B is domain of g)

Composition of two functions, f and g:  LaTeX: (f \circ g)(x) = f(g(x))

One-to-one and the Horizontal Line Test: (Use to determine if a function has an inverse without having to restrict its domain.)

One-to-one:  A function is one-to-one if and only if no two points on its graph have the same y-coordinate.

Horizontal line test:

Inverse functions:

The functions, f and g, are inverses of one each other if and only if both of the following conditions are true: 

Domain and Range of a function, LaTeX: f, and its inverse, LaTeX: f^{-1}:

Identifying Polynomial Functions:

polynomial function in one variable, x, is a function that can be written in the following form LaTeX: P(x) = a_nx^n + a_{n-1}x^{n-1} + \dots a_1x+a_0. The coefficients LaTeX:  a_n, a_{n-1}, \dots a_1, a_0 are real numbers, and the degree n is a whole number.

Finding zeros and their multiplicities of factored polynomials:

The number c is a zero of multiplicityof a polynomial function if and only if k is the largest positive integer such that LaTeX: (x-c)^k is a factor of the polynomial. 

Rational function vertical asymptotes: After the function has been written in its simplest form (no common factors in the numerator and denominator), then the vertical asymptotes are the values of x (or the input variable) that makes the denominator equal to zero.

Rational function horizontal asymptotes: To find the horizontal asymptotes (if any), compare the degree n of the numerator with the degree m of the denominator. 


Unit D: Exponential and Logarithmic Functions and Applications

Converting between logarithms and exponential functions: 

Change of base of logarithm from base a to base c:   (a, b, and c positive real numbers with LaTeX: \displaystyle a \ne 1 and LaTeX: \displaystyle c \ne 1)

LaTeX: \displaystyle \log_a b = \frac{\log_c b}{\log_c a}

Basic properties of logarithms:

Half-life or doubling time:  LaTeX: \displaystyle y = y_0e^{rt}  where 

Compound Interest Continuous  LaTeX: \displaystyle A = Pe^{rt}  where 

Compound Interest (Not Continuous)  LaTeX: \displaystyle A = P\left(1 + \frac{r}{n}\right)^{nt}  where